Alex headshot

AlBlue’s Blog

Macs, Modularity and More

Java 1.0 released 25 years ago

2021 java

25 years ago today, Java 1.0 was released to the world. I’ve written up a piece at InfoQ which has more detail about it, but I wanted to add my flavour to it from a personal perspective.

I got involved with Java when it was released in alpha in 1995, probably at the start of my last year at University. Until then I’d been learning many new programming languages, having taught myself Prolog and ML ahead of the University course requirements, but until then I’d mainly done Objective-C on my NeXT station. This was at a time when my fellow University students were looking at Linux, probably 1.x releases (I think it was 1.3 at the time when I had my NeXTstep 3.3 software).

Anyway, a friend of mine was interested in learning Java, and as I’d had object oriented experience as well as familiarity with C, we started putting together a few dummy apps. One of the first we wrote was a crossword app, the kind you now see on newspaper websites. Of course as an Applet it would no longer run, but it was a great way of demonstrating the power of the Java language. (It was a step down from Objective-C and AppKit, but that’s a story for another time.)

After University I got a job at IBM working on Java applications, and shortly afterwards helped kick off their training courses for Java, including OB-73, OB-74, their Java training material. At the time, students were converting from C and writing C-like Java code, including methods taking and returning byte[] arguments in place of their void* or char* arguments. One such student complained that “Java was crap” because “You could only have 65534 methods” and that “he had to add a second class.” Yes, dear reader, he had translated an entire C app into static methods in a pair of classes.

Off the back of that experience, and a contract for developing a Java GUI front end, I set up a Java and training consultancy with another of my ex-IBM friends. This would take me teaching Java around the world, from the Indian subcontinent to the American continent on the other side. I got involved in Java at conferences, teaching J2ME programming for the Sun roadshow, and even had some interaction with open-source projects (including the original Log4J release).

The Java GUI project dried up with the collapse of oil prices in the late ’90s, and the training and consultancy work dried up in 2001 after the airline industry collapsed and the dot-com bubble went with it. In retrospect, I should have focussed more on open-source development at the time, but the world was a different place and there were even concerns that programming would be off-shored to cheaper places.

Instead I shut down the company and went to work for as a Java team lead, followed by moving into the investment banking industry where I was known for both my Java nous and my ties. Sadly, I no longer wear ties (though I still have them) but Java keeps on going.

My work in investment banking involved a variety of different languages and architectures, but when Swift was released, I saw the future of macOS/iOS. I wrote a book on Swift the year it was released, and updated it for the open-source release the following year. I ended up working at Apple for a while, using both my Swift and Objective-C skills for internal use only. The only visible output of what I’ve worked on was the Xcode protobuf colouring support, the first Swift CVE vulnerability, as well as a variety of commits to the Swift Foundation library for Linux.

Today, I work in the cloud but I still keep my hand in with Java, and specifically with Eclipse. I was exposed to Eclipse in the early stages with my IBM Java training courses – at the time, I was teaching WebSphere courses, and at the time web development was a combination of VisualAge for Java, and HTML code was edited in different editors. IBM sponsored Eclipse to be the basis of WebSphere Studio 1.0, which had initially HTML editing but then took over the Java compilation for the applications. I helped do a lot of testing on macOS, and then as time went on, got more involved with the project. Today I’m a platform committer on Eclipse, a Java Champion, and I’ve written books on Eclipse and Swift, with a Java one in the works.

Java has been a key part of my career and my technical life, and will likely to continue be through to my retirement. Thanks Java!

Why ServiceCaller is better (than ServiceTracker)

2020 java osgi eclipse

My previous post spurned a reasonable amount of discussion, and I promised to also talk about the new ServiceCaller which simplifies a number of these issues. I also thought it was worth looking at what the criticisms were because they made valid points.

The first observation is that it’s possible to use both DS and ServiceTracker to track ServiceReferences instead. In this mode, the services aren’t triggered by default; instead, they only get accessed upon resolving the ServiceTracker using the getService() call. This isn’t the default out of the box, because you have to write a ServiceTrackerCustomizer adapter that intercepts the addingService() call to wrap the ServiceTracker for future use. In other words, if you change:

serviceTracker = new ServiceTracker<>(bundleContext, Runnable.class, null);;

to the slightly more verbose:

serviceTracker = new ServiceTracker<>(bundleContext, Runnable.class,
new ServiceTrackerCustomizer<Runnable, Wrapped<Runnable>>() {
public Wrapped<Runnable> addingService(ServiceReference<Runnable> ref) {
return new Wrapped<>(ref, bundleContext);
static class Wrapped<T> {
private ServiceReference<T> ref;
private BundleContext context;
public Wrapped(ServiceReference<T> ref, BundleContext context) {
this.ref = ref;
this.context = context;
public T getService() {
try {
return context.getService(ref);
} finally {

Obviously, no practical code uses this approach because it’s too verbose, and if you’re in an environment where DS services aren’t widely used, the benefits of the deferred approach are outweighed by the quantity of additional code that needs to be written in order to implement this pattern.

(The code above is also slightly buggy; we’re getting the service, returning it, then ungetting it afterwards. We should really just be using it during that call instead of returning it in that case.)

Introducing ServiceCaller

This is where ServiceCaller comes in.

The approach of the ServiceCaller is to optimise out the over-eager dereferencing of the ServiceTracker approach, and apply a functional approach to calling the service when required. It also has a mechanism to do single-shot lookups and calling of services; helpful, for example, when logging an obscure error condition or other rarely used code path.

This allows us to elegantly call functional interfaces in a single line of code:

Class callerClass = getClass();
ServiceCaller.callOnce(callerClass, Runnable.class, Runnable:run);

This call looks for Runnable service types, as visible from the caller class, and then invoke the function getClass() as lambda. We can use a method reference (as in the above case) or you can supply a Consumer<T> which will be passed the reference that is resolved from the lookup.

Importantly, this call doesn’t acquire the service until the callOnce call is made. So, if you have an expensive logging factory, you don’t have to initialise it until the first time it’s needed – and even better, if the error condition never occurs, you never need to look it up. This is in direct contrast to the ServiceTracker approach (which actually needs more characters to type) that accesses the services eagerly, and is an order of magnitude better than having to write a ServiceTrackerCustomiser for the purposes of working around a broken API.

However, note that such one-shot calls are not the most efficient way of doing this, especially if it is to be called frequently. So the ServiceCaller has another mode of operation; you can create a ServiceCaller instance, and hang onto it for further use. Like its single-shot counterpart, this will defer the resolution of the service until needed. Furthermore, once resolved, it will cache that instance so you can repeatedly re-use it, in the same way that you could do with the service returned from the ServiceTracker.

private ServiceCaller<Runnable> service;
public void start(BundleContext context) {
this.service = new ServiceCaller<>(getClass(), Runnable.class);
public void stop(BundleContext context) {
public void doSomething() {;

This doesn’t involve significantly more effort than using the ServiceTracker that’s widely in use in Eclipse Activators at the moment, yet will defer the lookup of the service until it’s actually needed. It’s obviously better than writing many lines of ServiceTrackerCustomiser and performs better as a result, and is in most cases a type of drop-in replacement. However, unlike ServiceTracker (which returns you a service that you can then do something with afterwards), this call provides a functional consumer interface that allows you to pass in the action to take.

Wrapping up

We’ve looked at why ServiceTracker has problems with eager instantiation of services, and the complexity of code required to do it the right way. A scan of the Eclipse codebase suggests that outside of Equinox, there are very few uses of ServiceTrackerCustomiser and there are several hundred calls to ServiceTracker(xxx,yyy,null) – so there’s a lot of improvements that can be made fairly easily.

This pattern can also be used to push down the acquisition of the service from a generic Plugin/Activator level call to where it needs to be used. Instead of standing this up in the BundleActivator, the ServiceCaller can be used anywhere in the bundle’s code. This is where the real benefit comes in; by packaging it up into a simple, functional consumer, we can use it to incrementally rid ourselves of the various BundleActivators that take up the majority of Eclipse’s start-up.

A final note on the ServiceCaller – it’s possible that when you run the callOnce method (or the call method if you’re holding on to it) that a service instance won’t be available. If that’s the case, you get notified by a false return call from the call method. If a service is found and is processed, you’ll get a true returned. For some operations, a no-op is a fine behaviour if the service isn’t present – for example, if there’s no LogService then you’re probably going to drop the log event anyway – but it allows you to take the corrective action you need.

It does mean that if you want to capture return state from the method call then you’ll need to have an alternative approach. The easiest way is to have an final Object result[] = new Object[1]; before the call, and then the lambda can assign the return value to the array. That’s because local state captured by lambdas needs to be a final reference, but a final reference to a mutable single element array allows us to poke a single value back. You could of course use a different class for the array, depending on your requirements.

So, we have seen that ServiceCaller is better than ServiceTracker, but can we do even better than that? We certainly can, and that’s the purpose of the next post.

Why ServiceTracker is Bad (for DS)

2020 java osgi eclipse

In a presentation I gave at EclipseCon Europe in 2016, I noted that there were prolems when using ServiceTracker and on slide 37 of my presentation noted that:

  • is a blocking call
  • results in DS activating services

Unfortunately, not everyone agrees because it seems insane that ServiceTracker should do this.

Unfortunately, ServiceTracker is insane.

The advantage of Declarative Services (aka SCR, although no-one calls it that) is that you can register services declaratively, but more importantly, the DS runtime will present the existence of the service but defer instantiation of the component until it’s first requested.

The great thing about this is that you can have a service which does many class loads or timely actions and defer its use until the service is actually needed. If your service isn’t required, then you don’t pay the cost for instantiating that service. I don’t think there’s any debate that this is a Good Thing and everyone, so far, is happy.


The problem, specifically when using ServiceTracker, is that you have to do a two-step process to use it:

  1. You create a ServiceTracker for your particular service class
  2. You call open() on it to start looking for services
  3. Time passes
  4. You acquire the service form the ServiceTracker to do something with it

There is a generally held mistaken belief that the DS component is not instantiated until you hit step 4 in the above. After all, if you’re calling the service from another component – or even looking up the ServiceReference yourself – that’s what would happen.

What actually happens is that the DS component is instantiated in step 2 above. That’s because the open() call – which is nicely thread-safe by the way, in the way that getService() isn’t – starts looking for services, and then caches the InitialTracked service, which causes DS to instantiate the component for you. Since most DS components often have a default, no-arg constructor, this generally misses most people’s attention.

If your component’s constructor – or more importantly, the fields therein, cause many classes to be loaded or perform substantial work or calculation, the fact that you’re hitting a synchronized call can take some non-trivial amount of time. And since this is typically in an Activator.start() method, it means that your nicely delay-until-its-needed component is now on the critical path of this bundle’s start-up, despite not actually needing the service right now.

This is one of the main problems in Eclipse’s start-up; many, many thousands of classes are loaded too eagerly. I’ve been working over the years to try and reduce the problem but it’s an uphill struggle and bad patterns (particularly the use of Activator) are endemic in a non-trivial subset of the Eclipse ecosystem. Of course, there are many fine and historical reasons why this is the case, not the least of which is that we didn’t start shipping DS in the Eclipse runtime until fairly recently.

Repo repro

Of course, when you point this out, not everyone is aware of this subtle behaviour. And while opinions may differ, code does not. I have put together a sample project which has two bundles:

  • Client, which has an Activator (yeah I know, I’m using it to make a point) that uses a ServiceTracker to look for Runnable instances
  • Runner, which has a DS component that provides a Runnable interface

When launched together, as soon as the method is called, you can see the console printing "Component has been instantiated" message. This is despite the Client bundle never actually using the service that the ServiceTracker causes to be obtained.

If you run it with the system property -DdisableOpen=true, the statement is not called, and the component is not instantiated.

This is a non-trivial reason as to why Eclipse startup can be slow. There are many, many uses of ServiceTracker to reach out to other parts of the system, and regardless of whether these are lazy DS components or have been actively instantiated, the use of causes them to all be eagerly activated, even before they’re needed. We can migrate Eclipse’s services to DS (and in fact, I’m working on doing just that) but until we eliminate the ServiceTracker from various Activators, we won’t see the benefit.

The code in the github repository essentially boils down to:

public void start(BundleContext bundleContext) throws Exception {
serviceTracker = new ServiceTracker<>(bundleContext, Runnable.class, null);
if (!Boolean.getBoolean("disableOpen")) {; // This will cause a DS component to be instantiated even though we don't use it

Unfortunately, there’s no way to use ServiceTracker to listen to lazily activated services, and as an OSGi standard, the behaviour is baked in to it.

Fortunately, there’s a lighter-weight tracker you can use called ServiceCaller – but that’s a topic for another blog post.


Using will cause lazily instantiated DS components to be activated eagerly, before the service is used. Instead of using ServiceTracker, try moving your service out to a DS component, and then DS will do the right thing.